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In recent years spectral analysis has become an increasingly popular

tool for use in the estimation of econometric models. The interest in

spectral analyais stems largely from the desire to have additional

methodologies for estimating economic time series relationships when

the more traditional time-domain methods are not satisfactory. However,

there has been relatively little discussion on the advisability of using

spectral analysis for such purposes.

In this paper I coment upon the applicability of L,pectral analysis

to econometric problems and provide some guidelines as to when spectral

analysis may prove a useful tool for economists. Since knowledge of

spectral analysis generally requires a substantial investment of time,

I first outline its possible uses so that -he economist unfamiliar with

the techniques can better evaluate his potential need. An outline of

the types of economic problems particularly susceptible to analysis by

spectral techniques should interest the investigator currently dealing

with those types of problems.

Any views expresseO in this paper are those of the author. They
should not be interpreted as reflecting the views of The Rand Corporation
or the official opinion or policy of any of its governmental or private
research sponrors. Papers are reproduced by The Rand Corpvration as a
courtesy to members of its staff.
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This paper is primarily concerned with the frequency-domin

applications of spectral analysis and the adviability of using such

analysis for exmining economic time serie relationships. That is,

I do not dwll upon the techniques developed by Lmnnan (1965) for using

spectral estimates to estimavoe distributed lag models. These techwiques

are really just an alternative method for estimating tmu-domainparm-

eters. One of the major stumbling blocks in the application of spectral

analysis in economics is the interpretation of the frequency domain.

In Section II I provide a brief description of s;pectral analytic

techniques. In Section III theoretical and practical reasons for and

against the use of spectral rialysis in economics are discussed. As

an illustration of the rationale for using spectral analysis in economics,

I discuss three specific examples from the literature in Section IV.

Finally, Section V presents the conclusions.

Spectral analysis is found to be a useful tool for a limited set

of economic hypotheses. The major conceptual problem in the application

of spectral analysis to economics is the economic interpretation of

frequency. Therefore, a major requirement to be satisfied is that there

be a reasonable frequency-domain interpretation of the hypothesis. On

the other hand, a nmber of practical problems my seriously limit the

use of spectral analysis in econometrics. The most important of these

are the large data requirements necessary for estimation, the limited

number of variables that can reasonably be included in the model, and

the matter of how to interpret the large number of estimates for any

given model (or alternatively, the lack of summary statistics). Conse-

quently, although spectral analysis may prove to be a useful tool, its

appli..bility (in the frequency domain) is limited.
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1. inmi-in ou SwZCZVAL A NA MS

Since there are a nier of excellent references dealing with the

presentation of spectral aaalysis, 1 my description of spectral tevhmiques

will be brief. Nowver, it would be useful at least to sumrize the

ethodology to put the discussion into the proper perspective.

Spectral analysis is a method by which time sories data are con-

verted into the frequency dmin for examination. Through the Fouriar

transform it can be shown that any stationary tim series can be decom-

posed into a stetion of sinusoidal waves of different frequencic (or

equivwrlntly, different periods). Each of these waves is completely

described by its frequency, amplitude, and phase shift. The frequency

is simply the fraction of a cycle that is completed in one period. The

amplitude is the height of the wave. The phase shift is the fraction

of a cycle that the wave is displaced from zero. Therefore, given a

real valued stationary time series x t(t - 1, 2, ... , TZ, where xt are

deviations from the mean, x t may be written:

n- I
xt -2 F Akcos( 2 T k/t+cpk) +A cos(TT),

kal

where

n - T/2 (suppose (T even),

Ak - amplitude for frequency k, and

cpk - phase shift for frequency k.

'For example, see Jenkins and Watts (1968), Fishman (1970), among
others.
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Figure 1 deonstrates the deccapositin of a continuous signal into

the suiation of three different cosine curvs. Figure Ia shows the

continuous signal; Figure lb sms --* Jecomposition. It is clear from

Figure 2b that mnt of the variance in the observed signal is described

by the cosine with the lowest frequency (that is, the longest period).

Impresion (1) my be rewritten:

n- I
(2) xt 

= Io

nm-n

where

lie =cose+isine, e + s.

On the other hand, the theory of Fourier transforms states that X may

be yr4 -ten as an inverse Fourier transform of xt

n- I n -iia/(3) 7 E te
'I t-n

Expressions (2) and (3) indicate that a tim series may be viced

either through the time domain [xt  or through the frequency domaint

LXf]. That is, Ext) and [Xf) are equivalent; they just represcnt

alternative views of the same data. Although economists are generally

quite familiar with the time dneain, many are not familiar with the

frequency domain. Therefore the meaning oi the frequency domain is

probably worth reiteration. The time domain refers to the description

of data in terms of their values over time. The frequency domain refers

to the same data, but with reference to the collection of sine and cosine

waves that would be required to produce those data.
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The funcrtional relationship betueen Xf and f ts known as the

specti-J (or power spectrum). The spectrum of a time series represents

a decomposition of variance in the frequency domain (versus the time-

lumain decomposition of variance techniques usually used by economists).

In other words, the spectrum measures the relative contribution of

different frequency bands to the variance of the time series. Those

frequencies that cuntribute most to the variation in the time series

will have the largest values for the power spectrum; those frequencies

that contribute least to the variation will have the smallest values.

For example, the spectrtm of a time series dominated by long-run swings

(for example, trends and long cycl,:-s) will have most of its power in

the low frequency bands, since long cycles primarily contribute to the

variance in that series. Alternatively, a time series dominateC by

short-run fluctuations will have a qpectrm with most of the power in

the high frequency bands.

Since the "true" spectrum is not observed, it must be estimated.

It can be shown that the spectrum of the autocovariance function for a

time series x t is equiralent to the spectrum of xt itself. However,

using the entire estimated autocovariance function (all T term) does

not produce a consistent estimator of the spectrum, for the analyst

never leaves the small sample situatior. On the other hand, a consistent

estimator of the spectrum does result from Fourier transforming a trun-

cated autocovariance function for the first M terms, where M < T. The

estimator can be further improved by averaging the spBctrm estimate

for a given frequency with the spectrum estimates for some nearby

frequencies. The weighting scheme for this averaging is known as tLe
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spec",al -,lidou, or averaging karmel. Therefore, by Fourier transforming

a trunca ted -- vcoa1.ame funtion through a spectral window the anlyst

is able to obtain comsistest estimates of the spectr .

The discuss ion up to this point has dealt with univariata spectral

analysis. Just as two series my be studied jointly in the tim domain,

they my be studied jointly in the frequency dmain by means of cross-

spectral analysis. In cross-spectral analysis the frequencies of one

variable are cmared with their counterparts of the other 'variable.

Therefore, for each estimated frequency, the analyst can exmiae that

relationship between the two variables.

Ma input to the cross spectrum is the cross-covariance function

(just as the input to the power spectrum is the autocovariance function).

The cross spectrum is the Fourier transform of the cross-covariance

function. Since the cross covariance is not, in genera]., an even function,
I

the cross spectrtum will generally be complex valued. In addition to

being complex valued, the cross spectrum has no readily apparent inter-

preta.tion (just as the cross-covariance function has no ready interpreta-

tion). However, three very usetul measures do arise from the cross

spectrum and the two sets of power spectra. First, the coherence

provides a measure of the correlation beleen the first variable and

the second for each given frequency. The jain measures the relation

between the amplitude of the explanatory variable and the amplitude of

the cross spectrum for each given frequency. Third, the rsase spectrun

measures the delay between the two variables for each given frequency.

'The power spectrum is real valued because the autocovariance
function is even kR(u) - R(-u)).
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nwmy (o Ve functions In the frequency domain have direct analogs

is the ordinary regression (time domain) model. The coherence is

-' analogme to the Rmasure in the regression model. The pin is much

l11e the regression coeffic$Ant. The piiasa& iAift is similar to a lag

operator In the regression model, showing the delay between the two

time series.*

Finally, multivariate spectral analysis can be used to exmine the

relationship between a d~penoent variable and several explanatory

variables, just as multiple ragression analysix allows exeminatiou of

the relationship between one dependent variable and several explanatory

variables in the time domain. However, the usefulness of multivariate

spectral analysis in economics is likely to be very limited because of

the extremely large numnber of paraweters necessary for estimtion of the

particular spectra.

In summary, spectral analysis provides a description cvf time series

variables in the frequency domain. That is, since any statioaiary time

series can be decomposed into a collection of sine sod cosine vaves of

different frequencies (via the Fourier transform), that time 2eries can

be examined across frequencies, not just across time.

1 oecare is needed in interpreting the phase shift in the time
domain, as shown by Reuse (1971). The phase shift is analogous to a
lag operator. Yet one cannot directly translate pure delay in the
frequency domain into distributed lag models. See Hause Zor further
eiplanation.
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]a. in naL AMM I uRCS

With the nmaroeu methods for lanstlating the relationships

betmes ecoomic variablUs in the time dcasia, why should ome wish

to ae spectral analysis? It is the thesis of this paper that spectral

aalysis Is useful in som instances when time-domin techniques do not

prove adequate. Certain typ s of hypotheses my be better examined in

the frequency domain then in the time domain. The special characteris-

tics that describe these hypotheses are discussed below. The practical

diffic-Jties that limit the usefulness of spectral analysis ae also

discussed.

It has been aunpsted that one area where spectral analysis night

be useful in economics Is in the estimation of distributed lag models

when the analyst has little or no prior irformation as to the shape of

the distributed lag cr even the number of term to be included in the

estination. This problem can be troublesome in the time domain because

of the multicollinearity between the lagged variables. When additional

lags re. Introduced into a least squares estimation, the estimates for

the previously estimated co.fficients change -- often markedly. That

is, the estimate for any one coefficient depends pertly upon the number

of terms includeu 1'4 the regression.

Spectral analysis has been proposed as a method for avoiding this

problem, since it does not 1apose prior rebtrictions on the model --

the data is said "to speak for iuself." However, although the phase

spectrum my be useful for iudicating the direction of leads and lags,

Hause (1971) nctes that it is not appropri te to view the phase spectrum
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in the framework of a distributed lag model. The phase represents

puxe delay in the frequuncy domAin, not a distributed lag. Therefore,

spectral analysis my not be useful in itself for the estimation of

distributed lag models. On the other haud, it may be useful for

identifying general leads 4nd lags.

An alternative method for estimating distributed lags using

spectral analysis is suggested by Hannan (1965). The spectral estimates

are converted back inte the time domain so that successive coefficients

are estimated independently of one another. This technique seems

promising, but this independence of the estimates comes at the cost of

possibly greater variance. Even so, Hannan's technique may be the best

way out of a troublesome problem. Hannan's technique is not dealt with

in this paper because, as noted in the introduction, this paper ±s

concerned with frequency-domain applications of spectral analysis.

Hannan's technique represents an alternative way of estimating the

time-domain parameters and, therefore, should be considered in that

framework.

Perhaps the greatest conceptual difficulty faced by economists in

the application of spectral analyeis is workin6 in the frequency domain

rather than in the time domain. Most economic hypotheses are given in

terms of time, not frequency. It could be argued that virtually no

economic hypotheses are given in terms of frequency. However, some

econom! hypotheses are given in terms of separate components, where

each component is expected to vary predictably over some regular period

of time; hence, these types of hypotheses may have some meani-ig in the

frequency domain. For example, consider the model in which the time
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series is postulated to considt of trend, cyclical, seasonal, add randeu

components. The trend component is expected to vary only over long

periods of time; the cyclical component is expected to vary somewhat

predictably over the course of a business cycle; the seasonal component

is expected to vary predictably over the course of a year; and the random

component has no predictable behavior. Although mode ls of this sort are

given in terms of time periods, they may also be thought of in frequency

terms.

Again, because economic hypotheses are seldom thought of in fre-

quency terms the application of spectral analysis in economics has been

limited. I could probably be argued that not only are most economic

hypotheses not given in frequency terms but also that it is not even

appropriate to think of most economic hypotheses in terms of frequency.

Indeed, it could be further argucd that it is not even appropriate to

think of component models like the one described above in the frequency

domain, for frequency-domain analysis imposes very restrictive conditions

on the meaning of frequency. That is, spectral analysis views frequencies

in terms of a narrow frequency band tha describes a set of consine waves.

Economists seldom attach such a precise meaning to the components of a

model, with the possible exception of the seasonal component, which is
ki

expected to adhere to a strict yearly cycl.e.

The above comments seem to imply that spectral analysis is never

applicable to economics, but that was not intended, for it will be argued

f It is difficult to argue for a piecise periodic interpretation even
for the seasonal component since there are leap years, different numbers of
days per month, and holidays. It ib partly for this reason that spectral
analysig is far more useful than periodogram analysis, for the spectrum
is actually an average of nearby frequency bands.



below that spectral analysis may actually be the most appropriate tool

to use in the estimation and testing of some types of economic hypothese-.

Instead, these coments actually apply strictly only to harmonic (or

periodogram) analysis, as used about the turn of the century. Since

spectral analysis provides a measure of the average contribution to

variation of a frequency band (rather than one single frequency),

spectral analysis has more meaning in economic; than strict harmor

analysis. However, the investigator must still keep in mind that the

frequency domain will often have no real meaning for an economic hypoth-

esis. Therefore, the distinction between the tir& domain and the fre-

quency JcQain must be clear. This does not preclude thinking of fre-

quencies .•s their period counterparts. In fact, in most cases it is

probably useful for econoists to think of cycle lengths, raher than

the frequencies corresponding to those , .ycles. Again, chis is largely

because most economic hypotheses are stiited in terms of time.

CRITERIA FOR THE USE nF SPECTRAL ANALYSIS IN ECONMICS

The initial criterion that an economic hypothesis must satisfy for

spectral analysis to be of auch use is that it have some plausible inter-

pretation in the frequency domain. Since the spectral results must

ultimately be interpreted in the framework of economics, it is essential

that thc hypothesis have some meani ; in the frequency domain.

Hypotheses that are amenable to spectral analysis fall into two

broad classes: ()) those that are perhaps best stated in the frequency

domain, and (2) those that are stated ic the frequency domain to take

1See Fishtn (1970).
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advntae of spee'Al properties of tie spectral eitimators. Th first

clasis of hypotheses consists of hose types of models in which it is

expected that the variables in the model have a reasonably well-defined

periodic nature and that the variables are related to one another in a

periodic sense. For example, suppose one wanted to test whether seasonal

fluctuations in the demand for money produce seasonal fluctuations in

interest rates. This class of hypotheses defines relationships between

variables in a periodic sense and attempts to identify the parameters

of the relationships.

It would be expected that the first class -f hypotheses is fairly

small. On the other hand, there may be a significant number of hypoth-

eses that, although best stated in the time domain, are more susceptible

to estimation or testing in the frequency domain. To undestand why it

might be preferable to use the frequency domain when the hypothesis

itself is best stated in the time domain, one must keep in mind that

the time domain (for exemple, the regression model) averages the rela-

tionahips between variables over all frequencies. That is, the regres-

sion coefficient tepresents the effects among variables as an average

of the effects over all frequencies. This can be seen by reviewing

expression (3) in the previous section.

In most cases, the fact that time-domain descriptioas of the data

are averages across frequencies presents no real problems. However,

if the investigator is interested in a hypothesis positing different

relationships for different parts of the spectrum, then spectral

an,,lysis -- in the frequency domain -- may prove to be a more useful

tool. Since time-domain analysis averages the relationship across all
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frequencies, the investigator my not be able to separate differing

behavior across different frequencies by t.t.-domain techniques. On

the other hand, spectral analysis permits explicit exmination across

frequencies.

tven if Ohe analyst expects different behavior across different

frequencies, averaging across frequency bands may not cause averious

problemu since most economic variables are dominated by a particular

subset of frequencies. In fact, a majority of economic time series

r.:-iables probably have most of their variation explained by the 1,w

frequency end of the spectrum -- that is, they are dominated by rela-

tively long-run changes. Therefore, the behavior in the other parts

of the spectrum has little effect on the total variation in the time

series.

The above statement should be interpreted with some care. If,

in fact, the hypothesis indicates differing behavior &..ross different

frequencies and if the time-domain model does not account for the

differing behavior, then the time-domain model will misapecify and the

1
coefficients will not be consistently estimated. The effects of such

a time-series estimation are perhaps most easily viem.d through the

errors-in-the-variables (EV) model. The analog to the "true" variable

in the EV model for the frequency domain may be taken to be the set of

frequencies that corresponds to the besic hypothesis (the "primary"

frequencies). The fact tiat other frequencies are not expected to behave

in the same manner corresponds to the "errors" in the EV model. Therefore,

An example of this problem is considered in the next section.



the smaller the mount of variance explained by these other frequencies,

the smiler are the errors in the INV model; the smaller the amotat of

variance explained by these other frequencies, the less serious it will

be to estimate the model in the time-domain even if the time-domain

model does not account for differing behavior across different frequencies.

Of course, if the time-domain model does account for the differing behavior

across frequencies, then consistent time-domain estimators viiU result. 1

These coaments imply that the usefulness of spectrcl analysis in

economics is largely dependent upon (1) the plausibility of a frequency-

domain interpretation for the model, (2) the consistency of behavior

across frequencies, and (3) the amount of variance explained by the

primary frequencies relative to the other frequencies.

PRACTICAL LIMITATIONS TO THE USE OF SPECTAL ANALYSIS

In addition to the theoretical rationale for and against the use

of spectral analysis in economics, one must also consider the practical

limitations. Three are considered here: (1) the large amount of data

required, (2) the interpretation of the phase angle, and (3) the lack

of sumary statistics.

Generally speaking, spectral analysis requires large amounts of

data. The reason for the large amounts of data is directly related to

the resolution often required in economics. The resolution of the

spectral estimates is a function of the truncation point M: the larger

M is, the finer the resolution. On the other hand, as M increases

'That is, if the time-domain model is specified correctly, then one
need not go to the frequency domain for estimation. An example of this
type of problem is the permanent income hypothesis examined in the next
section .
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relative to the total sample size, the variance cof the estimator in-

creases. Therefore, some compromise must be made between resolution

aed variance. For a spectru= that is expectr4 to contain narrow peaks

or trougbs, a smll frequency bandwidth (lrge M) is needed to resolve

the spectrum adequately. For a spectrwA that is relatively flat, a

much broader bandwidth my be choseq (smaller M).

This issue may be approachel from another point of view. For the

most comonly used spectral windows, the bias of the spectral estimator

is a function of the second derivative of the spectrum" such that the

bias is large when the absolute value of the second derivative is large

(the size of the second derivative determines Lhe sign of the bias).

For a spectrum with narrow peaks or troughs -- hence, a nonneglible

second derivative -- the bias will be greater than for a relatively

flat spectrum. Therefore, in order to avoid serious bias, a narrower

bandwidth must be chosen.

The problem of retiolution enters in a special way for economic

studies. As noted earlier, it is often useful to think of the spectrum

in economics not in terms of frequencies, but in terms of period iengths

corresponding to frequencies. It is often the longer periods (lower

frequencies) that are of special interest to economists. Although the

spectrum is estimated at H + 1 frequencies (zero frequency plus the

next N frequencies) equidistant from one another, the corresponding

Variods are not equidistant from one another. As an example, for the

frequencies

1See Jenkins and Watts (1968), p. 247.
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f t0, .1, .2, .3, .4, .5],

the corresponding periods are

per. - Lw, 10, 5, 3.3, 2.5, 2].

herefore, to obtain the desired resolution for the longer frequencies,

M will often have to be large; hence, the variance of the estimator will

be large (a result of the large H).

The above discussion points to one very important reason why spectral

analysip- has not been used more extensively. Since oae must often esti-

mate a large number of frequencies to obtain the desired resolution,

many date )bservatiorR are needed. Otherwise, the v&%riances of the

spectral estimates will be so large as to preclude any coafidence in

them. For example, suppose data are available for 96 months and it is

determined that H - 48 provides the desired resolution. Such an esti-

mation, using the Parzen spectral window, produces only about seven

degrees of freedom. The data problem becomes ruch worse when ore

attempts a multivariate spectral estimation.

The interpretation of the phase angle and associated leads and lags

is a problem often ignored in studies using spectral analysis. The

problem is that the phase angle is unique only in the range 0 to 2TT
1

(or equivalently, -TT to +TT). That is, any angle p', where

1Actually, unless the analyst has prior information as to whether
the two series are positively or negatively correlated, the phase angle
13 unique only in the range 0 to IT (or -TT/2 to + TT/2).
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q'- qc 2 k, k any integer,

will satisfy the definition of the phase augle. For example, a phase angle

of 0.5ff for a period of eight months could be interpreted as series x leading

y by two months, or ten mouths, or even lagging y by six months. The lack

of information about k causes the difficulty. Consequently, prior information

must be included in the model.

A third problem that can cause difficulties in interpreting the spectral

estimates in ter of aim economic hypothesis is the lack of sumary statistics.

For example, suppose tho ?elationhhip between x and y is estimated by cross-

spectrai techniques for 50 frequencies. Then the analyst must interpret the

meaning of 50 points on the coherency spectrum, 50 points on the phase spectrum,

and 50 points on the gain spectrum. He will be almost overwhelmed by estimates.

Very often this will not cause lI-rge problems in cross-spectral analysis since

he will be interested in only one part of the spect'cum. However, this problem

can become acute in multivariate spectral analysis since there are partial

coherency spectra, a full coherence spectrum, partial phase spectra, and partial

gain spectra. Therefore, although spectral analysis has the advantage of

decomposing a time series into its frequency components, this decomposition

has its drawbacks, for there are then no summary measures to describe the

relationship.

From the discussion on the amount of data necessary for spectral esti-

mation and the lack of sumary statistics, it is clear that spectral analysis

ie limited in a practical sense to univariate and bivariate analyses most

of the time. Occasionally, trivariate analysis may be used. Therefore,

spectral analysis is precluded from many economics hypotheses just on the

basis of the number of variables in the model.



IV, THRE EZhIQ'IXS OF THE USEFUlNESS, OF SrECU1AL ANALYSIS

An important consideration in the application of spectral an&18s1s

to economics is whether or not the hypothesis can be reasonably stated

in the frequency domain. One of the best examples of a hypothesis

falling into this category i,. given by Scully (1971). In fact, Scully'a

hypothesis is probably much better stated in the frequency domain than

in the time domain. Briefly, he attempted to exuine the relationship

between general business activity and strike activity. The hypothesis

proposed by others was that strike activity should be directly related

to, and a result of, general business activity. When business activity

is high, there should be a larger number of work stoppages; when business

activity is low, there should be few work stoppages.

This hypothesis has a very natural interpretation in the frequency

domain, largely because general business activity is presumed to behave

in a cyclical fashion. Scully's results point even further to the

appropriateaess of the frequency-domain statement of ths model. He

finds, as expected, that most of the variation in general business

activity is explained by the lower frequency bands, consistent with

the hypothesis that general business activity can be largely explained

by long-run and cyclical components. On the other hand, he finds the

somewhat surprising result that strike activi.ty is largely explained

by much shorter cycles -- on the order of 12 months. Therefore, the

initial hypothesis that strike activity is a result of general business

activity is refuted by this large discrepancy between the power spectra

of the two time series. His results are further enhanced by the low

coherence between the two series.
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Therefore, spectral mlysis represets the logical way to proceed

to estimate Scully's hypothesis. mmever, somtims one does not have

such a natural frequency-domain hypthsis, even though it might best

be sained in the frequeacy deain. That is, somtimes it is necessary

to reformlate the hypothcsis in the frequency donin although the

hypothesis is logically stated in the time domain. An example of this

is given by Cooper (1971 and 1972). Cooper's hypothesis represents a

case uhere differ'ng behavior is expected a priori across different

frequencies.

Cooper eamines the relationship between the money suprly and

stock returns. Through the combination of two different hypothesis --

the efficient capital markets model and the quantity theory of money --

it is expected that stock returns will lead the money supply in the

longer run but will lag the money supply in the short run. That is,

short-run deviations in money supply changes from the long-run trends

and cycles will lead stock returns, and the long-run trends and cycles

in money supply changes will lag stock returns. In addition, the

combination of the two theories predicts that the relatonshl.

between money supply changes and stock returns is much stronger for

the longer-run trends than for short-run devPrtions. These problems

are further compounded by the fact chat stock returns are expected to

have a flat power spectrum -- that is, each frequency band contributes

equally to the variance in the series. Therefore, since time-domain

procedures average all frequency bands, one would expect to make a

serious underestimate of the impcrtance of the long-term relationship

and possibly bias the coefficient estimates. This presents the extreme
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caeof err'ors In the 'variables, for tda unmmt of varanc expline by

the primary freqiancies Is no larger than the variance ezplaimd by

the other freqnm:ies.

Tim series regressim analysis bears out the above predic-I.om.

eagressions for mothly data shw rtete leading smy by roughly to

months, thus indicating the dabiance of the longr-rm hypothesis.

Bouwer, the 2 for monthly data is on the order of 0.05. On the other

hand, regressions for annual data show no lead or lag and an R of more

than 0.5. Therefore, the regression model does nat permit adequate

assessment of the hypothesis. !he spectral estimation reveals quite

a bit more. The coherence between money and returns was high for the

lower one-sixth of the spectrem (on the other c,! 0.5 to 0.7) and quite

low elsewhere, indicating the strength of the relationship for the low

frequency bands. The phase shift indicates that money las returns for

the lower frequencies (by approximately one to three months) and leads

for the higher frequencies (although the lead in the higher frequencies

is subject to question because of the low coherence). Finally, although

the regression coefficient for money is about 2.0, the gain measure for 41

the lower frequencies is between 3.0 and 5.0, indicating the bias that

may have occurred in the regression model.

The reason spectral analysis performs better than regression

analysis in this case is a result of (1) the expected differing behavior

acroso frequencies and (2) the flat spectrum for returns (the portions

of the spectrum where there is expected to be little relation are

averaged equally in the time domain representation).
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She third bypothesis Illustrates bor errors In the variables affect

the tizn-dmain reprectatem. md hw thNe mit be interpreted in the

freleemuy domala. 7riedam's (1957) pemment Income hypothesis indicates

dket Income and tie mry eac be decompo e into permanent and tran-

sitory componts. Petmuwat coesmtia is expected to be a function of

peommeat income; transitory Income mad consumption are assumed to be un-

related. Therefore, a model relating measured income to measured consumtion

is subject to e-t. rs In the variables. The frequency-dmmin interpretation

of this model would have the loqer-run componeats of income and consumption

related (corresponding to the "permnent" parts of the measured variables)

and the shorter-run compoents unrelated. Since. there are errors in the

variables, one would expect that the marginal propensity to consume would

be underestiumted using ordinary regression techniques on the measured

variables. Therefore, spectral analysis may present an attractive alter-

native for at least testing the validity of the hypothesis. If the co-

herence and gain are constant acroas frequencies, then one Vrould reject the

permanent income hypothesis (see Fishuan [1970]). Alternatively, if the

investigator can specify the model in the time domain (for example, suppose

that "permanent income" is a geometrically declining weighted average of

past values of measured inmrn), then time domain techniques are useful.

Nowever, tpectral analysis would be useful to test whether or not the per-

maent income hypothesis Is valid without specifying the permanent component.

These three exumples yresent cases where spectral analysis is a useful

tool in economics. Bovever, they are not intended to indicate that all

hypotheses are appropriate for spectral analysis. Quite the contrary, the

restrictive conditions developed in Seztion III indicate that spectral

analysis is useful for only a few economic hypotheses.
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Although spectrl aalysis offers an interestinS way to estimate

son econoic hypotheses, it does not app.sr to be gamerally useful for

ecommic problems as a wimle. First, the hypothesis under investigati.

nust have a reasonable interpretation in the frequency domain. Second,

hypotheses that indicate substantial differeace in behavior across f'e-

quencies may be amnable to sFp ctrul analysis. This is even more true

if the frequency bands of interest explain only a small fraction of the

total variance in the time series.

In addition to the theoretical restriction, several practical

elements limit the usefulte- of spectral amlysis. First, large data

sets are generally requiLed in order to make adequate estimates of the

spectrum. Second, the lack of sumary statistics often makes spectral

analysis difficult to interpret. Third, spectral techniques are probably

limited for the most part to univariate and bivariate models, with some

possibility of extending to trivariate models. Therefore, many economic

hypotheses are precluded from estimation in the frequency domain just

because Lney cannot be represented as a simple two or three variable

model.

One advantage to using spectral analysis is that the time series is

broken down into individual frequency coponents, wbich can theselves

ba studied independently or together. In covariance analysis (and in

regressi.on analysis) the contributions of the different frequencies are

all lumped cogether. However, this very advantage of spectral analysis

is also its nemesis, for it is confusing to simultaneously examine and
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evaluate the large umber of frequency points. I ot applications in

economics, the estimates should be studied in groups (or frequcaicy bands).

The user should avoid both general sunary statistic, of the entire

spectrum2 (unless, of course, the estimates lend themselves to that type

of measure) and frequency by frequency analysis of the sprectrum (which

may be of use in physical science applications). Also, in light of the

large number of estimates, the user should attempt to evaluate the results

in the framework of one or several different hypotheses, instead of merely

presenting the various spectra. This is particularly true for the phase

angle in cross or multivariate spectral analysis, for the phase angle

has little meaning unless placed in the framework of some theory.

One aspect of the advantage of frequency domain analysis is the

symetric considerat-on given to both lags and leads between two series.

For example, suppose that the low frequency components of x(t) lead the

low frequency components of y(t) and that the high frequency compoacuts

of x(t) lap the high frequency components of y(t). By its very nature,

spectral analysis separates out these different effects, whereas time

domain analysis may confuse these two distinct effects. That is, re-

gression coefficients in time domain analysis lump together the effects

of different frequencies. Therefore, it may be very difficult to sort

It is for this reason that inference is an difficult in spectral
analysis. While the meaning of a confidence interval for a point esti-
mate is clear, the meaning of a confidence interval for a function is
not. Therefore, since the spectrum is a function of frequency, confi-
dence bands cannot be used for the spectrun. One possible approach is
to prescribe a loss function and to integrate the losses over all fre-.
quencies. This would yield a scalar loss rather than a vector of losses.

2Covariance and/or regression estimates provide such summaries.

t i
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out both leris and lags in the time domain representation. Alternatively,

consider the following inventory problem. Suppose that firms effectively

anticipate seasonal fluctuatiorS in demand with their inventories but do

not effectively anticipate cyclical or random movements in demand. Then,

for seasonal frequencies inventories will lead sales while sales will lead

inventories for nonseasonal fraquencies. Spec-ral analysis will sort out

this relation while the time domain results may not allow the analyst to

distinguish these separate effects.

If used properly, spectral analysis can be a useful tool in economics.

The real obstacle to the use of spectra lies not in the technical end (e.g.,

lag or spectral windows, truncation points, etc.) but in the interpretation

of the spectral estimates.

\I

\.
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